Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sex Med ; 19(5): 697-710, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057569

RESUMO

BACKGROUND: Activation of endothelial small conductance calcium-activated K+ channels (KCa2.3) and intermediate conductance calcium-activated K+ channels (KCa3.1) leads to vascular relaxation. We found endothelial KCa2.3 down-regulation in the corpus cavernosum diminishes erectile function. AIM: We hypothesized that in type-2 diabetic mice, the function of KCa2.3 and KCa1.1 channels is impaired in erectile tissue. METHODS: Erectile function was measured, and corpus cavernosum strips were mounted for functional studies and processed for qPCR and immunoblotting. OUTCOMES: Effects of type 2 diabetes on erectile function, expression and function of calcium-activated potassium channels. RESULTS: In anesthetized diabetic db/db mice, erectile function was markedly decreased compared to non-diabetic heterozygous db/+ mice, and the impairment was even more pronounced compared to normal C57BL/6 mice. qPCR revealed KCa2.3 and KCa1.1α channel expressions were upregulated in corpus cavernosum from db/db mice. Immunoblotting showed down-regulation of KCa2.3 channels in the corpus cavernosum from db/db mice. Acetylcholine relaxations were impaired while relaxations induced by the nitric oxide, donor SNP were unaltered in corpus cavernosum from db/db compared to C57BL/6 and db/+ mice. Apamin, a blocker of KCa2 channels, inhibited acetylcholine relaxation in corpus cavernosum from all experimental groups. In the presence of apamin, acetylcholine relaxation was markedly decreased in corpus cavernosum from db/db vs C57BL/6 and db/+ mice. An opener of KCa2 and KCa3.1 channels, NS309, potentiated acetylcholine relaxations in corpus cavernosum from db/+ and db/db mice. Iberiotoxin, a blocker of KCa1.1 channels, inhibited acetylcholine relaxation in corpus cavernosum from db/+ mice, while there was no effect in tissue from db/db mice. CLINICAL TRANSLATION: Erectile function in diabetic db/db mice was severely affected compared to heterozygous and control mice, findings suggesting the non-diabetic db/+ and diabetic db/db mice for translational purpose can be used for drug testing on, respectively, moderate and severe erectile dysfunction. The altered expressions and impaired acetylcholine relaxation in the presence of apamin compared to C57BL/6 mice may suggest decreased KCa1.1 channel function may underpin impaired endothelium-dependent relaxation and erectile dysfunction in diabetic db/db mice. STRENGTHS & LIMITATIONS: The present study provides a mouse model for type 2 diabetes to test moderate and severe erectile dysfunction drugs. Decreased KCa1.1 channel function contributes to erectile dysfunction, and it is a limitation that it is not supported by electrophysiological measurements. CONCLUSION: Our results suggest that the contribution of iberiotoxin-sensitive KCa1.1 channels to relaxation is reduced in the corpus cavernosum, while apamin-sensitive KCa2.3 channels appear upregulated. The impaired KCa1.1 channel function may contribute to the impaired erectile function in diabetic db/db mice.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Disfunção Erétil , Canais de Potássio Cálcio-Ativados , Masculino , Humanos , Camundongos , Animais , Acetilcolina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/complicações , Apamina/farmacologia , Apamina/metabolismo , Camundongos Endogâmicos C57BL , Pênis/irrigação sanguínea , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Potássio Cálcio-Ativados/farmacologia
2.
Hypertension ; 55(2): 547-54, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20038752

RESUMO

Adrenic acid (docosatetraenoic acid), an abundant fatty acid in the adrenal gland, is identical to arachidonic acid except for 2 additional carbons on the carboxyl end. Adrenic acid is metabolized by cyclooxygenases, cytochrome P450s, and lipoxygenases; however, little is known regarding the role of adrenic acid and its metabolites in vascular tone. Because of its abundance in the adrenal gland, we investigated the role of adrenic acid in vascular tone of bovine adrenal cortical arteries and its metabolism by bovine adrenal zona glomerulosa cells. In adrenal cortical arteries, adrenic acid caused concentration-dependent relaxations, which were inhibited by the epoxyeicosatrienoic acid antagonist 14,15-epoxyeicosa-5(Z)-enoic acid and the cytochrome P450 inhibitor SKF-525A. The large-conductance calcium-activated potassium channel blocker iberiotoxin or removal of the endothelium abolished these relaxations. Reverse-phase high-pressure liquid chromatography and liquid chromatography/mass spectrometry isolated and identified numerous adrenic acid metabolites from zona glomerulosa cells, including dihomo-epoxyeicosatrienoic acids and dihomo-prostaglandins. In denuded adrenal cortical arteries, adrenic acid caused concentration-dependent relaxations in the presence of zona glomerulosa cells but not in their absence. These relaxations were inhibited by SKF-525A, 14,15-epoxyeicosa-5(Z)-enoic acid, and iberiotoxin. Dihomo-16,17-epoxyeicosatrienoic acid caused concentration-dependent relaxations of adrenal cortical arteries, which were inhibited by 14,15-epoxyeicosa-5(Z)-enoic acid and high potassium. Our results suggest that adrenic acid relaxations of bovine adrenal cortical arteries are mediated by endothelial and zona glomerulosa cell cytochrome P450 metabolites. Thus, adrenic acid metabolites could function as endogenous endothelium-derived and zona glomerulosa-derived hyperpolarizing factors in the adrenal cortex and contribute to the regulation of adrenal blood flow.


Assuntos
Glândulas Suprarrenais/metabolismo , Ácidos Erúcicos/metabolismo , Ácidos Erúcicos/farmacologia , Proadifeno/farmacologia , Glândulas Suprarrenais/irrigação sanguínea , Análise de Variância , Animais , Fatores Biológicos/metabolismo , Bovinos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/metabolismo , Endotélio Vascular/metabolismo , Ácidos Graxos Insaturados , Canais de Potássio Cálcio-Ativados/farmacologia , Probabilidade , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Zona Glomerulosa/irrigação sanguínea , Zona Glomerulosa/metabolismo
3.
Br J Pharmacol ; 138(7): 1320-32, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12711633

RESUMO

1. The nonpsychoactive cannabinoid abnormal-cannabidiol (trans-4-[3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-5-pentyl-1,3-benzenediol) (abn-cbd) produced concentration-dependent relaxation of methoxamine-precontracted rat small mesenteric artery. Endothelial removal reduced abn-cbd potency six-fold without affecting the maximum relaxation. 2. In endothelium-intact vessels, abn-cbd was less potent under 60 mM KCl-induced tone and inhibited by combination of L-N(G)-nitroarginine methyl ester (L-NAME) (nitric oxide synthase inhibitor; 300 micro M), apamin (small conductance Ca(2+)-activated K(+) channels inhibitor; 50 nM) and charybdotoxin (inhibitor of intermediate conductance Ca(2+)-activated K(+) channels and large conductance Ca(2+)-activated K(+) channels BK(Ca); 50 nM). L-NAME alone or in combination with either toxin alone had little effect. 3. In intact vessels, relaxations to abn-cbd were inhibited by SR 141716A (cannabinoid receptor antagonist; 1 or 3 micro M). Concomitant addition of L-NAME, apamin and charybdotoxin had no further effect. Other cannabinoid receptor antagonists either had little (SR 144528; 1 micro M and AM 251; 1 micro M) or no effect (AM 630; 10 micro M and AM 281; 1 micro M). Inhibition of gap junctions, G(i/o) protein coupling and protein kinase A also had no effect. 4. Endothelium-independent relaxation to abn-cbd was unaffected by L-NAME, apamin plus charybdotoxin or capsaicin (10 micro M). Abn-cbd inhibited CaCl(2)-induced contractions in vessels with depleted intracellular Ca(2+) stores and stimulated with methoxamine or KCl. This was insensitive to SR 141716A (3 micro M) but greatly reduced in vessels stimulated with ionomycin (Ca(2+) ionophore; 1 micro M). 5. We conclude that abn-cbd relaxes the rat small mesenteric artery by endothelium-dependent activation of K(+) channels via SR 141716A-sensitive pathways, which do not involve CB(1) and CB(2) receptors. It also causes endothelium-independent, SR 141716A-insensitive, relaxation by inhibiting Ca(2+) entry through voltage-gated Ca(2+) channels.


Assuntos
Canfanos/farmacologia , Canabidiol/farmacologia , Antagonistas de Receptores de Canabinoides , Fatores Relaxantes Dependentes do Endotélio/farmacologia , Junções Comunicantes/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Artérias Mesentéricas/efeitos dos fármacos , Piperidinas/farmacologia , Canais de Potássio Cálcio-Ativados/farmacologia , Pirazóis/farmacologia , Receptores de Canabinoides/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Animais , Canais de Cálcio/efeitos dos fármacos , Cloreto de Cálcio/farmacologia , Relação Dose-Resposta a Droga , Técnicas In Vitro , Masculino , Miografia , Ratos , Ratos Wistar , Rimonabanto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...